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Numerical Evidence for Mass Dependence 
in the Diffusive Behavior 
of the "Heavy Particle" on the Line 
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A numerical simulation shows that the diffusion constant of a test particle in a 
one-dimensional system of hard points depends on the mass of the test particle. 
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We consider the following dynamical  system(~): at time zero infinitely many  
point  particles, all of mass m =  1 (i.e., the bath),  are distributed on 
according to a Poisson distribution of density p, and a test particle of mass 
m = M is posed at the origin. The velocities are distributed according to the 
Maxwell distr ibution for free particles, i.e., 

aP( v ) = (fl/2~z ) ~/2 exp( - f ly2 /2 )  dv (1) 

for the bath particles, and 

dP( V) = (flM/2rc ) t/2 exp( - t i m  V2/2) dV (2) 

for the test particle. The dynamics  of  the system is determined by Newton ' s  
law for elastic collisions a m o n g  the particles. 

Let X(t),  V(t) be the posit ion and the velocity of the test particle at 
time t; we are interested in comput ing  the diffusion coefficient: 

D = ,~lim ( X 2 ( t ) ) / t  = 2 ; o  (V(O) V(t) ) dt (3) 
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as a function of the mass M [averages in (3) are over the initial Gibbs dis- 
tribution]. In the case M = m = 1 (the "equal mass" case) a classical result 
gives D = (Ivl)/p~l) .  A corresponding explicit result for the unequal mass 
case is not known. However, some bounds are available. In fact in Ref. 2 it 
has been proved that 

(v2) 2 (Ivl)  
- -  ~ < D ~ <  ( 4 )  (fvl~) p p 

and one might conjecture that D = ( Iv l ) /p ,  i.e., that D is independent of M 
[this in fact appeared in a discussion between J. Lebowitz, S. Goldstein, 
and one of the authors (D.D.)]. 

In fact such is the case for the diffusion Constant of a test particle 
moving in an infinite nearest-neighbor harmonic chain (for a recent treat- 
ment see Ref. 3). This leads then quite naturally to the conjecture that test 
particle diffusion in systems with pair potentials, allowing for harmonic 
approximation, is independent of the mass of the test particle. 

Note that the diffusion in such one-dimensional system, where par- 
ticles cannot separate over very large distances, arise only through the dif- 
fusive motion of the system as a whole: in particular, every particle, of the 
system diffuses in the same way. 

The dynamics of the one-dimensional hard point system is from a 
computational point of view very simple, and hence it is natural to test the 
first conjecture of mass independence of test particle diffusion by numerical 
simulation (simulation for the second conjecture is in preparation). We 
report here the result of a such a computer simulation which shows that 
the diffusion constant does in fact depend on the mass. In particular the 
diffusion constant of the test particle seems to have a maximum when its 
mass is equal to the mass of the bath particles. We expect this to be a 
special phenomenon occurring only due to the nonsmoothness of the hard 
point interaction. 

Our computer simulations also suggest that the lower bound in (4) is 
achieved for very large M. This in fact leads to an explanation from which 
we also obtain a theoretical value for the large mass diffusion constant. 

From (3), by change of variables, we obtain 

From Refs. 4 and 5 we know that essentially 

1 - -  t7  
lira (x/-M V(Mt) ~ V(O) ) = -fle 

m ~ o o  

(5) 
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with 1/Tfl= (v2>2/<jv[3> p-Doo, the lower bound in (4). Our simulation 
therefore suggests that the limM~ ~ may be exchanged with the time 
integral in (5). 

From Ref. 4 we also know that the mechanical process V(t) is for large 
M well approximated by a Markovian process V*(t) (on compact time 
intervals). Assuming this is true for all t, we are led to compute the dif- 
fusion constant D* for the Markovian approximation V*(t). Now its 
g e n e r a t o r  is (4) 

Ah(V)=p f f (v) fv-Vlh V + ~ ( v - V )  dv-2(V)h(V) 

with )~(V) = p S f(v)l V -  vl dr. Thus 

D * = 2  (V,e 'AV>dt=2 V,-~V , 

and hence we look for a function g(V) with Ag(V) ~ V, where -~ means up 

to the order O(1/M2), considering V= O(1/x/-M ). This is straightforward 
and yields 

( -~2pm<lvl}flM 1 - 4 M < [ v l )  ( 2 x / ~ /  (6) 

and we observe that (for f Maxwell• 

M+m 1 
lim ---- M~o~ 2pm<lvl>~M 2pm<[v[>~ -D~ 

Furthermore, with our choice of m, 1% and p (see following), Eq. (6) reads 

M+m 
D* = ~(1 -- 3/(8M)) 4Mmp (7) 

See Table I for comparison with the computer results. 

Table  I. Va lues  o f  the  D i f f u s i o n  C o n s t a n t  D at  D i f f e r e n t  Masses  M a 

M 0.1 0.5 1.0 2.0 5.0 10.0 20.0 
T 15.0 10.0 5.0 5.0 10.0 25.0 50.0 
D 0.91_+0.03 0.98__+0.02 1.0• 0.96__+0.02 0.84• 0.81_+0.02 0.79• 
D* 0.957 0.872 0.831 0.809 

T is the time (in units of the mean collision time) used for the computation; D* is the result 
obtained from the Markovian approximation (6). 
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Our numerical simulation in order to compute D is straightforward. A 
number n of bath particles are distributed on the interval I - L ,  L]  
according to a uniform distribution with density p = 1, and the initial 
velocities are given by (1). We fix the temperature 1/fl = n/2 (then we have 
( Iv l )  = 1, @ 2 ) =  ~z/2, (Iv[ 3) =~) .  The test particle is placed at the origin 
and its velocity is extracted from (2). Then we compute the motion of the 
test particle up to a large enough time T (see the following) directly using 
the law of collisions. No integration error occurs in the construction of the 
trajectories, because the dynamics is exactly solvable. The process is 
iterated for a large sample of independent initial configurations. For each 
trajectory of the sample we evaluate X(t) and the corresponding velocity 
V(t) on the time interval [0, T]. The averages in (3) are then performed 
over the collected data. In all our runs we use 100,000 independent trajec- 
tories (so that the statistical error is less than 1%). We note that the 
algorithm to evaluate the averages is not the one usually employed in 
molecular dynamics (MD) calculations, where a single long time- 
mechanical trajectory is used to average over many time-origins. In fact for 
this simple system it is possible to exact independent initial configurations 
directly from the exact Gibbs distribution: unlike usual MD calculations 
there is therefore no persistence of correlation between subsequex~t initial 
configurations. (6) Another advantage of taking ensemble averages instead 
of time averages is that is is sufficient to follow the trajectory only for the 
time T which is necessary to observe the linear behavior of (X2(t))  and to 
correctly integrate (V(0) V(t)) (T obviously depends on M). This time is 
(of course) much shorter than the time used in MD for statistical reasons. 

We found that for such time T it is possible to use a large enough 
system to make the test-particle motion insensible to the boundary con- 
ditions. We used a free system, i.e., neither walls nor periodic boundary 
conditions were imposed. To make sure that the size of the system was 
suitable, we monitored the rate of the average number (c(t)) of test-par- 
ticle collisions at time t: for systems with 350~<n~700, d(c)/dt starts 
decreasing at times which are always greater than T. This behavior is 
shown in Fig. 1 for the case M = 10. We also verified that up to time T the 
trajectory of the test particle computed using periodic boundary conditions 
is the same as that computed in the free system. 

The diffusion coefficient has been computed both by means of the 
integral of the autocorrelation function of the velocity and by measuring 
the slope of the linear region of the mean square displacement. Figure 2 
shows (X2(t))  in the case M =  10: as can be seen, the noise is negligible. 
The values of the diffusion coefficient for different test-particle masses are 
listed in Table I. The values of D obtained by (X2(t)) and (V(0) V(t)) 
agree within the error reported in the table. The numerical value for M = 1 
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Fig. 1. Average rate of test-particle collisions d<c >/dt as function of time in the case M = 10 
and n = 350 (t is in units of the mean collision time). T is the time used to compute D. The 
decay of the velocity autocorrelation function is also plotted for comparison. 

< X 2 >  

Fig. 2. 
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Mean-square displacement vs. time in the case M =  10 and n = 350 (t is in units of 
the mean collision time). 
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coincides with the theoretical result D = 1. For  M # 1 all the values of D 
are within the bounds (4) (with our choice of /3 and p the bounds are 
rt/4~<D~<l); however, they are different from 1. We also note that the 
value found in the case M = 20 is very near to the theoretical lower bound 
D = r~/4 = 0.7854. 

Figure 3 illustrates, in the "heavy mass" case, the behavior of the 
autocorrelation function. It appears that in this case the autocorrelation 
functions decays without oscillation from positive values to zero. The decay 
shows a twofold behavior: at the beginning it is clearly exponential, and 
then it seems to follow a powerlaw. This is visible in the figure, where lines 
corresponding to the decay t -3 are plotted for comparison (t -3 is the 
decay to zero from negative values in the equal mass case(I)). The power- 
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Fig. 3. The decay of the velocity autocorrelation as a function of time (in units of the mean 
collision time) for three values of the mass  M of the test particle on a log-log plot. The open 
circle, closed circle, and triangle refer to M = 5, M = 10, and M = 20, respectively. The straight 
lines are drawn with a slope corresponding to t -3. The system has 700 bath particles and the 
averages are performed over 100,000 initial configurations. 
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Fig. 4. Deay of (V(0) V(t)) for M=0.1.  

law decay starts at times which are large enough to give only a negligible 
contribution to the value of D. 

Figure 4 shows the behavior of (V(0) V(T)) in a "light mas~" case. 
For M ~< 1 the autocorrelation function has a negative minimum and seems 
to present damped oscillations about zero: the noise, though, is in this case 
higher so that a more accurate analysis is numerically difficult. 

The computations were performed on the CRAY X-MP 12 at 
CINECA (Casalecchio-Bologna). 
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